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The projected crystal potential is reconstructed from a nonperiodic high-

resolution transmission electron microscopy exit wave function using a

maximum-likelihood re®nement algorithm. The convergence and the accuracy

of the algorithm are investigated using simulated exit wave functions of SiGe, a

Shockley partial dislocation in Ge and an area containing randomly distributed

Ge columns at different specimen thicknesses. The performance of two different

start models for the projected crystal potential is investigated: the weak-phase-

object model and a model based on the electron-channelling approximation.

The reconstruction is successful even under the strongly nonlinear dynamical

diffraction conditions at larger specimen thicknesses, relevant for high-

resolution work, and on specimen areas large enough to cover defects in

crystalline materials.

1. Introduction

In high-resolution transmission electron microscopy, the

scattering of an incident electron wave by the atomic potential

of an object is exploited to obtain structural information. The

resulting exit wave leaving the object at the bottom surface is

imaged by means of an electron optic system. This introduces

a number of well known imaging artifacts like, for example,

half-spacing contrast from a periodic object, contrast deloca-

lization near defects in crystalline materials, contrast inversion

rendering atom columns either bright or dark relative to the

image mean intensity, and contrast attenuation of object detail

at high spatial frequencies. In recent years, several different

techniques, such as electron holography (Lichte, 1986), focal-

series reconstruction (Gerchberg & Saxton, 1972; Schiske,

1973; Kirkland, 1984; Kirkland et al., 1985; Saxton, 1978, 1988;

Coene et al., 1992; Van Dyck et al., 1993; Thust et al., 1994; Jia

& Thust, 1999) and beam-tilt reconstruction (Saxton, 1988;

Kirkland et al., 1995), have been developed to remove the

imaging artifacts and restore the exit wave up to the resolution

limit of the microscope, assuming that a reconstruction

provides a more intuitively interpretable view of the structure.

In electron holography, an intensity distribution is recorded

that originates from the interference between the exit wave

function and a known undisturbed reference wave. The exit

wave function can then be determined directly from the

intensity distribution. In focal-series reconstruction, a series of

images of the exit wave function is taken using different focus

settings of the microscope. By separating the effects of elec-

tron±optic imaging and the exit wave function on the image

intensities, the exit wave function can be reconstructed. The

same principle is applied in beam-tilt reconstruction, where a

series of images of the exit wave function is taken using

different beam tilts with respect to the optic axis.

In general, however, the strong interaction of electrons with

the atomic potential of the object results in dynamical multiple

scattering whose complex nature leads to a loss of a direct one-

to-one relationship between the projected potential and the

exit wave. This applies particularly to thick objects containing

heavy elements and to crystalline objects aligned along a low-

index zone axis with respect to the incident electron beam. An

example of a property of the exit wave that can give rise to

intuitive misinterpretation is the fact that, owing to the

PendelloÈsung behaviour of dynamical scattering, beyond a

certain specimen thickness a strongly scattering atom column

produces a weaker local phase shift than a weakly scattering

atom column. Another example is the creation of asymme-

trical wave components in the presence of specimen tilt with

respect to the incident electron beam.

In principle, two ways are possible to obtain information

about the projected crystal potential once the exit wave has

been determined experimentally by the above-mentioned

techniques. On the one hand, one can apply the numerical

simulation of dynamical scattering, implemented in standard

simulation packages (e.g. Stadelmann, 1987), to a number of

different test potentials until the simulated exit wave and the

reconstructed exit wave match according to a certain set of

rating criteria. On the other hand, `direct' reconstruction

techniques have been developed (Henderson et al., 1986; Van

Dyck et al., 1989; Op de Beeck & Van Dyck, 1996; Gribelyuk,
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1991; Beeching & Spargo, 1993; Spargo et al., 1994; Lentzen &

Urban, 1996; Spence, 1998; Allen et al., 1998, 1999; Rez, 1998,

1999) that avoid the potentially tedious process of rating a

large number of test potentials and imply the inversion of the

dynamical scattering process.

The following enumeration of already elaborated attempts

to solve the reconstruction problem gives comments on their

use for the practically important case of the restoration of the

projected potential at larger specimen thickness and on

specimen areas large enough to cover defects in crystalline

materials.

In the past few decades, a number of direct reconstruction

schemes have been worked out that are based on the one-to-

one relation between the strength of the scattering potential

and the phase of the exit wave within the framework of the

weak-phase-object approximation. An application of this

technique is given by Henderson et al. (1986). These schemes

are suitable for a direct potential restoration, but the weak-

phase-object approximation is commonly only valid for the

scattering from thin specimens containing light elements.

In recent years, a reconstruction technique has been

developed by Van Dyck et al. (1989) and Op de Beeck & Van

Dyck (1996). It makes use of the fact that, under certain

conditions, electron propagation through a crystalline

specimen in a low-index orientation can be treated as a

channelling phenomenon (Howie, 1966; Kambe et al., 1974;

Fujimoto, 1978). This allows substantial simpli®cations in the

treatment of the quantum-mechanical scattering problem. If

the intercolumn distance is not too small and the mass per

thickness of an atom column is not too high, then the ampli-

tude and phase modulation of the exit wave function is

con®ned to the projected column position. If, furthermore, the

resolution is high enough to discern individual adjacent atom

columns, then a large-area analysis of the scattering object,

column by column, is possible by exploiting the relatively

simple relation between the local modulation of the exit wave

and the scattering power of an atom column. The approxi-

mation works well for specimen thicknesses relevant for high-

resolution work, but with increasing thickness or in the

presence of heavy-atom columns more and more delocalized

components are added to the exit wave, thus hampering a

simple scattering analysis.

A third attempt was made by Gribelyuk (1991) based on the

re®nement of an estimate of the projected potential using the

multislice algorithm (Cowley & Moodie, 1957). The ®rst esti-

mate is calculated from the exit wave by assuming single

scattering and a subsequent free-space propagation over the

estimated specimen thickness. A correction of the model of

the scattering potential is then calculated from the difference

between the experimental exit wave and an exit wave simu-

lated using the multislice algorithm and the estimate of the

potential found so far. The last step is repeated until conver-

gence to a stable solution. Later, a variant of this method was

published by Beeching & Spargo (1993), in which the multi-

slice iteration is performed in reverse order, and in which

the potential correction is determined from the difference

between a plane entrance wave and the entrance wave

calculated from the experimental exit wave. Since the multi-

slice algorithm is used for the calculation of the wave func-

tion, both re®nement schemes are suitable for large-area

restoration. It was shown (Gribelyuk, 1991; Beeching &

Spargo, 1993; Spargo et al., 1994), however, that both variants

of the re®nement fail to ®nd the correct solution at a larger

specimen thickness where the assumptions concerning the ®rst

estimate of the potential are not valid.

Our own earlier approach (Lentzen & Urban, 1996) based

on a statistical search for the projected potential using the

simulated-annealing algorithm (Metropolis et al., 1953) avoids

the need for a starting guess for the model potential, however,

at the expense of a comparably long calculation time. The

rating of test projected potentials is carried out using the

multislice algorithm, and therefore this technique can also in

principle be used on larger specimen areas. The statistical

search works well at small specimen thickness but at larger

thicknesses convergence towards a `false' ambiguous solution

may occur because search space seems to become too complex

in that case.

Two ingenious inversion schemes have been published

recently by Spence (1998) and Allen et al. (1998, 1999), who

show that a complete solution of the reconstruction problem

for a periodic specimen is possible by exploiting the intensity

distribution of the Bragg re¯ections in diffraction patterns of

the specimen area under investigation. While the diffraction

intensities provide information comparable to that of a

Patterson function up to a very high spatial resolution, the

missing phase information is either collected by the simulta-

neous measurement of fringe intensities from partly over-

lapping diffraction discs recorded under convergent-beam

conditions (Spence, 1998) or extracted from the symmetry

properties of dynamical scattering imposing a suitable number

of mathematical constraints on the solutions of the inversion

equations (Allen et al., 1998, 1999). These two inversion

schemes work well for periodic objects containing a limited

number of spatial frequencies. For more complicated periodic

objects, the experimental effort grows with the number of

object spatial frequencies to be reconstructed since the

number of diffraction peaks to be measured quantitatively

increases at the same time. Both schemes require the

numerical diagonalization of large matrices, whose dimensions

grow with the number of spatial frequencies involved. Inver-

sion from diffraction data has the advantage that resolution is

not limited by lenses or diffraction limits.

Recently, it was shown by Rez (1998, 1999) that the

projected crystal potential can be determined from two exit

waves of the same specimen area measured at different

acceleration voltages. A numerical test using simulated exit

waves generated from a known input potential showed that

the input and the reconstructed Fourier coef®cients of the

potential were in good agreement concerning the amplitude,

while there was some error in the phase (Rez, 1998, 1999). The

restoration is carried out using a direct relation between the

projected potential and the local change of the exit wave, and

is therefore suitable for a potential reconstruction on large

specimen areas.



The above enumeration shows that none of the existing

reconstruction techniques alone, with the exception of the

channelling reconstruction (Van Dyck et al., 1989; Op de

Beeck & Van Dyck, 1996) and the voltage variation technique

(Rez, 1998, 1999), is suitable for an application at larger

specimen thicknesses and at the same time on large specimen

areas containing defects in crystalline materials.

In this work, we propose an approach to the reconstruction

of the projected crystal potential of a strongly scattering object

on large specimen areas based on a maximum-likelihood

re®nement algorithm. The maximum-likelihood re®nement is

a powerful improvement of the above re®nement approaches

(Gribelyuk, 1991; Beeching & Spargo, 1993) to the recon-

struction problem with respect to performance at larger

specimen thicknesses. It is combined with a start model of the

projected potential, which is derived from a given exit wave

function using the channelling approximation (Howie, 1966;

Kambe et al., 1974; Fujimoto, 1978) of dynamical electron

scattering. The proposed re®nement technique is suitable for

the reconstruction of the projected potential of defects in

crystalline materials.

2. Theory of the maximum-likelihood refinement

Within the framework of the maximum-likelihood formalism,

the re®nement of the projected crystal potential consists of a

reiterated three-stage calculation. It comprises the successive

simulation of an exit wave function using a model of the

projected potential, the rating of the simulated exit wave with

respect to the experimental exit wave and the calculation of a

correction of the model potential from the difference between

the simulated and the experimental exit waves.

2.1. Calculation of the exit wave function

In electron microscopy, the dynamical diffraction of an

electron wave by the atomic potential of an object is calcu-

lated mainly using either the Bloch-wave formalism (Bethe,

1929) or the multislice technique (Cowley & Moodie, 1957).

Considering the numerical ef®ciency and the computer

memory requirements, in the present implementation the

multislice algorithm was chosen for the calculation of an exit

wave function. Additionally, the multislice algorithm provides

not only the exit wave function but also the wave functions at a

number of intermediate specimen thicknesses, which is useful

during the fast calculation of the correction of the model

projected potential described in x2.4.

2.2. Comparison of exit wave functions

The second step of the maximum-likelihood re®nement is

the comparison of an exit wave function simulated using a

model potential with an experimentally obtained exit wave

function. In the maximum-likelihood formalism, the rating

between the simulated exit wave function  sim�r� and the

experimental exit wave function  exp�r� is performed by

calculating their mean squared difference:

S2 � R j sim�r� ÿ  exp�r�j2 dr; �1�
where r denotes a vector in real space. Using the Fourier

coef®cients of both exit wave functions, 	sim�g� and 	exp�g�,
the rating can be calculated equivalently in reciprocal space,

S2 � R j	sim�g� ÿ	exp�g�j2 dg; �2�
where g denotes a vector in reciprocal space. The reciprocal-

space representation (2) gives the same value as the real-space

representation (1) via Parseval's theorem. The two repre-

sentations show equal performance in numerical calculations

but the reciprocal-space representation (2) is advantageous

when analytical calculations concerning dynamical diffraction

are performed. For this purpose, it is useful to rewrite (2) in

terms of the cross-correlation coef®cient of Wexp and Wsim:

S2 � 2ÿ 2RehWexpjWsimi; �3�
where Wexp and Wsim denote the vectors of the Fourier coef-

®cients 	exp�g� and 	sim�g�.

2.3. Calculation of the potential correction

The maximum-likelihood principle requires the determi-

nation of the minimum of S2 with respect to the exit wave

function  sim�r�. This is equivalent to determining the

minimum of S2 with respect to the Fourier coef®cients of the

projected potential, U�g�:
@S2=@U�g� � 0; �4�

since the exit wave function is related to the projected

potential via

Wsim�t� � PW0: �5�
Wsim�t� denotes the vector of Fourier coef®cients of the exit

wave function at a specimen thickness t, W0 the vector of

Fourier coef®cients of the entrance wave function and

P � exp�2�iAt� �6�
the dynamical scattering matrix (Hirsch et al., 1967). The

structure matrix A contains the Fourier coef®cients of the

projected potential, the excitation error s�g� of the diffracted

beams and the inverse electron wavelength K:

A�g; h� � U�gÿ h�=2K; g 6� h; �7�
A�g; g� � s�g�: �8�

Inserting (3) and (5) into (4), one can see that determining the

minimum of S2 requires the calculation of the derivative of the

dynamical scattering matrix P with respect to the Fourier

coef®cients of the projected potential.

An analytical expression for the gradient of S2 is calculated

using the slice expansion (Sturkey, 1957, 1962) of the

dynamical scattering matrix and the formalism of quantum-

mechanical perturbation theory (Merzbacher, 1961). The slice

expansion of P yields

P�A; t� � PN�A;�t� �9�
via equation (6) if A is independent of t and the crystal is cut

into N slices of thickness �t � t=N. If the projected crystal
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potential U�r� is changed by a small perturbation ~U�r�, then

the structure matrix A will change to A� ~A with

~A�g; h� � ~U�gÿ h�=2K; g 6� h; �10�
~A�g; g� � 0: �11�

The scattering matrix will change to

P�A� ~A; t� � P�A; t� �PN
k�1

PNÿk�A;�t�2�i ~A�tPk�A;�t�

�O � ~A�t�2ÿ �
; �12�

which is obtained by using the slice expansion (9) and

expanding the product to ®rst order of the perturbation ~A. In

principle, this equation is equivalent to a result by Speer et al.

(1990), however, the form (12) provides an easy way to

calculate the gradient of S2. With the limit N!1, the

difference between the perturbed and the unperturbed scat-

tering matrix, ~P, takes the form

~P�A; ~A; t� � P�A� ~A; t� ÿ P�A; t�

� Rt
0

P�A; t ÿ t0�2�i ~AP�A; t0� dt0: �13�

The calculation of S2 in reciprocal space (3) involves the

determination of the expectation value

hWexpjWsim�t�i � hWexpjP�A; t�jW0i: �14�
The effect of the perturbation of the projected potential, ~U�r�,
on this expectation value amounts to the difference

hWexpjP�A� ~A; t�jW0i ÿ hWexpjP�A; t�jW0i
� hWexpj ~P�A; ~A; t�jW0i

� Rt
0

hP�A; t0 ÿ t�Wexpj2�i ~AjP�A; t0�W0i dt0: �15�

From (3), (13), (14) and (15), the change of S2 due to the

perturbation is

~S2 � S2�A� ~A� ÿ S2�A�

� 4� Im
Rt
0

hP�A; t0 ÿ t�Wexpj ~AjP�A; t0�W0i dt0
� �

: �16�

At this point, it is instructive to study the physical meaning of

expression (16). The scattering matrix P�A; t0 ÿ t� induces a

back-propagation by a distance t ÿ t0, therefore

We�t0� � P�A; t0 ÿ t�Wexp �17�
denotes a back-propagation of the experimental exit wave

function from the exit plane, z � t, to a plane inside the

crystal, z � t0. On the other hand, the expression

Ws�t0� � P�A; t0�W0 �18�
denotes the entrance wave at z � 0 propagated forward to the

same plane inside the crystal, z � t0. The integrand in (16) is

the matrix element of the perturbation evaluated at the crystal

plane t0 and the integration including all crystal planes

performs a thickness averaging of the matrix element.

With the obtained results, a compact description of the

gradient of S2 with respect to the Fourier coef®cients of the

projected potential can be derived. Now a particular choice of

the perturbation is made, where the perturbation of the real

potential, ~U�r�, contains only one spatial frequency, g, so that

in the Fourier representation only coef®cients ~U�g� and ~U�ÿg�
are nonzero, which are related by Friedel symmetry. The

evaluation of (16) using (17) and (18) yields

@S2

@U�g� �
2�i

K

Z t

0

X
h

	�s �hÿ g; t0�	e�h; t0��
ÿ	�e�hÿ g; t0�	s�h; t0�� dt0; �19�

the gradient of S2 in reciprocal space. The Fourier transform of

(19) yields

@S2

@U�r� �
4�

K
Im

Z t

0

 �e�r; t0� s�r; t0� dt0
� �

; �20�

the gradient of S2 in real space, which is the key result to

proceed with the determination of the potential correction to

a given model projected potential.

In principle, many ways are possible to solve the maximum-

likelihood equation (4) or its real-space equivalent

@S2=@U�r� � 0 �21�
for a projected potential U�r� generating a wave function that

matches the experimental wave function.

The re®nement algorithm presented in this work follows the

standard route of gradient search (Press et al., 1989), which

exploits the fact that close to a minimum of S2 the negative

gradient points more or less towards the minimum. In the

present case, the re®nement of the projected potential is

achieved by subtracting a small portion of the gradient of S2 to

a guess at the true projected potential. The whole procedure is

repeated with the corrected potential until S2 converges to a

minimum, or to a value of zero for the case of a perfect match.

Since the gradient has a unit of 1=U and its magnitude is a

priori unknown, a suitable real scale factor must be found in

order to obtain a useful expression for the potential correc-

tion. A good estimate of the scale factor C can be derived from

the well known observation that small changes of the

projected potential generally cause small kinematical changes

of the exit wave function. This particularly holds true for

electron scattering from a weak phase object (WPO), where

the exit wave function and the projected potential are related

by

 WPO�r; t� � 1� �i�U�r�=K�t: �22�
Let us now suppose that  WPO�r; t� is the experimentally

obtained exit wave function  exp�r� and that the ®rst estimate

of the projected potential is U�1��r� � 0 generating an exit

wave function  s�r; t� � 1. The ®rst re®nement step provides

an improved model for the projected potential via

U�2��r� � U�1��r� ÿ C
@S2

@U�r�
����

U�r��U�1��r�
: �23�



For the weak phase object, the ®rst re®nement step is suf®-

cient to restore the correct potential, hence U�2��r� � U�r�.
Now C can be determined from (23) and (20) using the

approximationRt
0

 �e�r; t0� s�r; t0� dt0 �  �e�r; t� s�r; t� t; �24�

valid for the weak phase object. The solution is

C � �K=2�t�2; �25�
so that the general nth re®nement step reads:

U�n�1��r� � U�n��r� � �U�n��r� �26�
with

�U�n��r� � �K=�t2� Im
Rt
0

 �s �r; t0� e�r; t0� dt0
� �

; �27�

where  �e�r; t0� and  s�r; t0� are determined for the model

potential U�n��r�.

2.4. Numerical implementation

The iterative solution of the maximum-likelihood equation

(21) using the re®nement formulae (26) and (27) contains two

approximations that tend to reduce the convergence speed,

and hence the numerical ef®ciency, of the simple gradient

search. Firstly, in many cases, the gradient of S2 does not

precisely point towards the minimum of S2 (Press et al., 1989).

Therefore, a single re®nement step will miss the proper

minimum position. Secondly, the scale factor C, although

rendering the correct unit of the potential correction, is only a

rough estimate for objects deviating from the weak-phase-

object model. If the resulting potential correction is too large

or too small, additional re®nement steps are needed to

proceed towards the minimum.

Modern numerical implementations of gradient search

methods (Press et al., 1989) include two improvements that

speed up the calculation and make the numerical re®nement

more stable. The ®rst improvement concerns a correction of

the search direction, which is equal to the gradient direction in

(27), by the use of conjugate gradients. A detailed description

is beyond the scope of this paper but the underlying principle

is easy to explain. It is immediately clear that the local

gradient of S2 alone gives only an incomplete model of the

shape of the functional dependence of S2 close to a minimum

and additional information on the curvature of S2 will improve

the situation signi®cantly. Within the framework of gradient

search, such information can be inferred at a re®nement step n

by exploiting knowledge of previously calculated gradients at

steps nÿ 1; nÿ 2; . . ., since the difference between the indi-

vidual gradients directly re¯ects the curvature. In practice, it is

suf®cient to include the gradient at step nÿ 1 for the calcu-

lation of the search direction

D�n��r� � �U�n��r� � ��n�D�nÿ1��r�; �28�
with

��n� �
R ��U�n��r� ÿ �U�nÿ1��r���U�n��r� drR ��U�nÿ1��r��2 dr

; �29�

which is the Fletcher±Reeves formula of the conjugate

gradient, applied to the potential correction (27). For the ®rst

re®nement step, where no previous gradient information is

available, the search direction coincides with the gradient,

D�1��r� � �U�1��r�: �30�
The last three expressions, (28), (29) and (30), give a better

estimate of the search direction, while the magnitude of the

potential correction is still ®xed.

The second improvement of the simple gradient search

concerns a ®ne-tuning of the magnitude of the potential

correction at re®nement step n by introducing a dimensionless

`feed-back' parameter �n�:

U�n�1��r� � U�n��r� � �n�D�n��r�: �31�
The optimum potential correction is determined by mini-

mizing S2 with respect to �n�, which is in practice achieved by

trying a small number of different feedback parameters and

calculating a ®t to the minimum. Regarding numerical ef®-

ciency, it is suf®cient to calculate the optimum feedback

parameter from three values of S2, say for �n� � 0, �n� � 1=2

and �n� � 1, using a parabola ®t.

The gain of the operation is generally a higher convergence

speed of the re®nement, at the expense of the calculation of

three exit wave functions related to the respective projected

potentials U�n��r�, U�n��r� �D�n��r�=2 and U�n��r� �D�n��r�.
One exit wave function, that related to U�n��r�, has to be

calculated in any case, since it is needed to determine the

gradient via (27), so that the net expense of the parabola ®t is

the calculation of two additional exit wave functions.

The use of the conjugate-gradient method and the ®ne-

tuning of the feedback parameter speed up the convergence

considerably, but still most of the work is spent in the calcu-

lation of the integral in (27), which involves the propagation of

the entrance wave and the back-propagation of the experi-

mental exit wave function through the crystal. In the present

work, the integral is evaluated numerically using the trape-

zoidal rule,Rt
0

 �s �r; t0� e�r; t0� dt0 � ��t=2� �s �r; 0� e�r; 0�

��t
PNÿ1

k�1

 �s �r; k�t� e�r; k�t�

� ��t=2� �s �r; t� e�r; t�; �32�
where �t � t=N denotes the slice thickness and the wave

functions at thicknesses t0 � k�t are conveniently calculated

using the multislice algorithm (x2.1). The numerical back-

propagation of the experimental exit wave function is

achieved by operating the multislice algorithm with a negative

slice thickness, which is justi®ed by the fact that P�A;ÿt� is the

inverse of the scattering matrix P�A; t�, holding also for each

slice of expansion (9).
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In principle, two different layouts of the numerical

evaluation of (32) are possible, one optimized for execution

speed and another optimized for memory ef®ciency. In the fast

version, the back-propagation of the experimental exit wave

function is performed ®rst yielding the wave functions

 e�r; k�t� in descending order, k � N;N ÿ 1; . . . ; 1; 0, which

are each kept in memory. Then the forward propagation of the

entrance wave is performed yielding the wave functions

 s�r; k�t� in ascending order, k � 0; 1; . . . ;N ÿ 1;N. At each

slice, the respective wave-function product (32) is calculated

and accumulated with the proper weight. In the memory-

saving version, the back-propagation of the experimental exit

wave function is performed from the exit plane to the entrance

plane of the crystal yielding  e�r; 0� but now without storing

the wave functions at intermediate slices. Then two multislice

iterations are performed in parallel, one starting with the

entrance wave function and one starting with  e�r; 0�. At each

slice, the respective wave-function product (32) is calculated

and accumulated with the proper weight. The trade-off

between execution speed and memory ef®ciency of the two

layouts is immediately clear: The fast layout needs additional

memory to store N wave functions, the memory-ef®cient

layout needs one additional multislice iteration for the back-

propagation. For the present work, the fast layout was

implemented since nowadays standard workstations are

equipped with suf®ciently large memory.

3. Start models for the projected potential

The vital element of any successful re®nement method is the

choice of a good start model. The better the model, the faster

the re®nement will converge towards the `true' solution.

Beyond a certain mismatch between the start model and the

true projected potential, re®nement algorithms are even

unable to restore the true solution (Gribelyuk, 1991; Beeching

& Spargo, 1993; Spargo et al., 1994) and they tend to converge

to local minima of S2, representing `false' or unphysical

projected potentials. Therefore, it is highly desirable to collect

as much relevant physical information as possible for the ®rst

guess at the true projected potential.

The major source of information is, of course, the experi-

mentally measured exit wave function, which in many cases

directly provides structural detail, like atom column positions

or hints at the scattering power of individual atom columns.

In the following subsections, two useful start models are

described that can be directly derived from the experimental

exit wave function.

3.1. The weak-phase-object model

The relation between the projected potential and the exit

wave function for a weakly scattering object imposing only a

phase modulation on the incoming entrance wave has already

been described in x2.3, equation (22). From the arguments

given for the derivation of the scale factor C in equation (25),

it is clear that the ®rst step of the maximum-likelihood

re®nement is compatible with the weak-phase-object

restoration of the projected potential if U�r� � 0 is chosen as a

®rst guess. In other words, a separate processing of the exit

wave function in order to derive a ®rst guess of U�r� is not

needed, since it is already automatically included in the

re®nement.

3.2. The electron channelling model

In general, it is much more dif®cult to set up a starting guess

for the projected potential for the case of dynamical scattering

from a thick specimen than for the weak-phase-object case.

The exit wave function contains amplitude and phase modu-

lations that are generally not directly related to the projected

crystal potential. One important exception is the case of

dynamical scattering in crystalline materials where the

amplitude and phase modulations of the electron wave func-

tion remain localized close to the projected column positions

(Howie, 1966; Kambe et al., 1974; Fujimoto, 1978). This special

scattering situation is that of electron channelling.

The electron wave function inside the crystal is conve-

niently described by a linear superposition of Bloch waves

bk�r�,
 �r; z� �P

k

�kbk�r� exp�2�ikz�; �33�

which ful®l the SchroÈ dinger equation

r2bk�r� � 4�2�U�r� ÿ 2Kk�bk�r� � 0; �34�
with �k being the excitation coef®cient of Bloch wave k and

2Kk the respective energy eigenvalue. The boundary condi-

tion at the entrance plane of the crystal requires the continuity

of the entrance wave and the wave inside the crystal:P
k

�kbk�r� � 1 �35�

for a plane entrance wave.

It is quite generally known that in crystalline materials for

electrons incident parallel to a low-index crystal direction the

wave function inside the crystal can be well approximated by a

superposition of very few Bloch waves only. If the interatomic

distances are large enough and the atoms light enough, then

the number of important Bloch waves may even be reduced to

two, for example for electron channelling along the �110�
direction in silicon and germanium at an accelerating voltage

of 400 kV. In that case, the excitation coef®cients of the two

strongest Bloch waves have values of j�1j2 � j�2j2 � 0:92 and

j�1j2 � j�2j2 � 0:99.

For the case of two Bloch waves excited, (33) is reduced to

 �r; z� � �1b1�r� exp�2�i1z� � �2b2�r� exp�2�i2z�: �36�
Introducing � � 1 ÿ 2, � � �1 � 2�=2 and ' � ÿ2� �z

together with the boundary condition (35) results in

 �r; z� exp�i'� � cos���z� � i�2�1b1�r� ÿ 1� sin���z�:
�37�

From the SchroÈ dinger equation and the boundary condition

(35), an approximate relation between the projected crystal

potential U�r� and the Bloch wave b1�r� can be derived, with



� � 1=� being the extinction distance for the two-Bloch-

wave case,

U�r��=2K � �1b1�r� ÿ j�1j2; �38�

which is exact if r2��1b1�r� � �2b2�r�� � 0. Inserting the

approximation (38) in (37) gives a direct relation between the

projected crystal potential and the exit wave function,

 �r; z� exp�i'� � cos
�z

�
� i

U�r��
K
� 2j�1j2 ÿ 1

� �
sin
�z

�
;

�39�

which can be solved for the projected potential,

U�r� � A Imf �r; z� exp�i'� ÿ h �r; z� exp�i'�ig; �40�

with h. . .i denoting the spatial average with respect to r and

A � K=�� sin��z=���: �41�

Equation (40) is the de®nition of the channelling model of the

projected potential with the unknown parameters A and '. In

principle, an optimum choice of the parameters for an

experimental exit wave function can be determined by trying

different pairs �A; '�, calculating the respective projected

potentials, simulating the related exit wave functions and

®nally rating these using S2.

Within the framework of the channelling model, an

optimum choice for exp�i'� can be derived directly from the

experimental exit wave function. Equation (39) indicates that

a proper value of the unknown phase yields a complex func-

tion  �r; z� exp�i'� whose real part is constant with respect to

r. There is, of course, an ambiguity by an angle of �, which can

be simply resolved since a reasonable projected potential (40)

exhibits positive peaks at the atom column sites. In practice,

the real part of (39) is not strictly constant with respect to r

since (38) is an approximation and therefore the optimum

phase is determined by minimizing the variance of

Ref �r; z� exp�i'�g. A complementary criterion is used by Op

de Beeck & Van Dyck (1996), which exploits the `peakedness'

of the resulting projected potential map.

With the optimum choice for the phase, sin��z=�� in (41)

can be determined using the relation

cos��z=�� � Refh �r; z� exp�i'�ig �42�

up to a sign, an ambiguity that is resolved as described above.

Therefore, the search for the parameter A is reduced, together

with the known inverse wavelength, K, to an estimate of the

extinction distance, �.
The electron-channelling model, although being put in a

different but equivalent form from equations (39) to (41), has

already been used experimentally to derive projected poten-

tial maps from exit wave functions (Op de Beeck & Van Dyck,

1996) or to add the missing phase information in dynamical

diffraction intensities (Sinkler et al., 1998; Sinkler & Marks,

1999).

4. Application to simulated exit wave functions

4.1. Test structures

Three different test structures are chosen in order to

investigate the convergence and the accuracy of the

maximum-likelihood re®nement algorithm: (i) SiGe in the

�110� zone-axis orientation with random Si and Ge occu-

pancies (Fig. 1a); (ii) the core structure of a 90� Shockley

partial dislocation terminating a stacking fault in Ge �110� (Fig.

1b); and (iii) an area containing randomly distributed Ge

columns (Fig. 1c). The ®rst two structures have a disordered

zinc-blende and a diamond structure, respectively, which in the

�110� projection exhibit the well known `dumb-bell' structure

of closely spaced atom columns. The three structures repre-

sent different degrees of nonperiodicity and the SiGe alloy

structure allows a study of the performance of the algorithm

for a reconstruction area containing columns of different

scattering power.

For each structure, a thickness series of exit wave functions,

t � 4, t � 52 and t � 100 AÊ , was simulated using the multislice

routine implemented in the EMS package (Stadelmann, 1987),

with an accelerating voltage of 400 kV and a slice thickness of

4 AÊ . In all cases, a frame size of 34� 32 AÊ was used, sampled at

a rate of 512� 512 pixels. The Doyle±Turner parameteriza-

tion of the electron scattering factors and a thermal vibration

parameter of B � 0:6 AÊ 2 were used for the Ge and Si atoms,

and absorption was neglected. The amplitude and phase of the

exit wave functions at t � 100 AÊ belonging to the three test

structures are displayed in Fig. 2.

The respective thicknesses were chosen in order to cover

three very different scattering situations. At t � 4 AÊ , the three

test objects can be described well by the weak-phase-object

model where the transmitted beam still has an intensity close

to 1 and the diffracted beams are only weakly excited. At

t � 52 AÊ , electron scattering is strongly dynamical for the

second and third test structures with the transmitted beam

adopting a relatively low intensity while most diffracted beams

have a relatively large intensity. At t � 100 AÊ , dynamical

scattering leads to a situation where the transmitted beam

regains a relatively high intensity while the diffracted beams

have low intensity. The extinction distances of Ge �110� and Si

�110� are �Ge � 150 and �Si � 320 AÊ , and the large difference

between the two extinction distances leads to different local

amplitude and phase modulations of the exit wave function at

the Si and Ge columns of the SiGe alloy test structure. The

most prominent related contrast feature is the phase wrap of

the exit wave function at a specimen thickness of t � 100 AÊ ,

which is displayed in Fig. 2(a), where the local phase at the Ge

columns advances the mean phase by more than � while the

local phase at the Si columns advances the mean phase by less

than �.

A comparison of the projected structures displayed in Fig. 1

and the respective exit wave functions displayed in Fig. 2

shows that the wave functions resemble the column structures,

but in general the dynamical scattering leads to contrast

features that are not directly related to the scattering power of

individual columns.
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4.2. Reconstruction of the projected crystal potential

The reconstruction experiments using the maximum-like-

lihood re®nement algorithm consist of three steps. Firstly, an

`input' exit wave function is generated using the known

projected crystal potential as described in the previous

section. Secondly, the reconstruction of the projected crystal

potential is started by calculating a ®rst guess at the potential

from the input exit wave alone using either the weak-phase-

object model (x3.1) or the channelling model (x3.2). Thirdly,

the maximum-likelihood re®nement algorithm is applied to

the previously calculated ®rst guess in order to reconstruct the

projected potential from the input wave function. Finally, the

reconstructed projected crystal potential is compared with the

`generating' projected crystal potential.

In total, 18 reconstructions have been performed, for each

of the three test structures at the three specimen thicknesses

listed before and for the two different start models of the

projected crystal potential. The maximum-likelihood re®ne-

ment was successful in 15 cases and the resulting maps of the

projected crystal potential match the true `generating'

projected potential extremely well. The respective graphic

representations are virtually identical and Fig. 3 displays the

result of the reconstruction for the three test structures at a

specimen thickness of 100 AÊ , where the re®nement was started

from the channelling model. In three cases, the reconstruction

algorithm was not successful, namely for the re®nements

starting from the weak-phase-object model at a specimen

thickness of 100 AÊ .

Within the framework of the maximum-likelihood form-

alism, success or failure of a reconstruction is judged by

measuring the ®nal mismatch between the input exit wave

function and the exit wave function corresponding to the

reconstructed projected potential using the respective value of

S2. The reconstructions at small specimen thicknesses resulted

in values of S2 around 7� 10ÿ6, whereas the successful

reconstructions at larger specimen thickness resulted in larger

values of around 8� 10ÿ4. The reason for this slight residual

mismatch is numerical round-off errors, which tend to be

larger at higher specimen thickness since in that case the

number of slices and hence the number of multislice steps

needed is larger.

The convergence behaviour of the maximum-likelihood

re®nement algorithm is depicted in the plot in Fig. 4. The plot

shows the value of S2 as a function of the re®nement step for

the SiGe alloy test structure at a specimen thickness of 100 AÊ

using the channelling model. The re®nement starts at

S2 � 5:0� 10ÿ2, which indicates a crude ®t of the ®rst guess at

the projected potential derived from the channelling model.

During the re®nement, the trial projected crystal potential is

modi®ed more and more towards a potential whose corre-

sponding exit wave function is better correlated to the input

exit wave function. Finally, the re®nement is stopped at a value

of S2 � 8:0� 10ÿ4 since no further substantial improvements

occur.

The calculation times needed for individual potential

reconstructions ranged from 1 to 20 min on a 250 MHz DEC

Alpha workstation with a SPECfp95 rating of 8.4, depending

on the specimen thickness, the number of re®nement cycles

and the choice of the start model.

Figure 1
Projection of three test structures. Large spheres indicate Ge atom
columns and small spheres Si atom columns. (a) SiGe �110�; (b) 90�

Shockley partial dislocation terminating a stacking fault in Ge �110�; (c)
randomly distributed Ge columns.
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Figure 2
Simulated exit wave functions at a specimen thickness of 100 AÊ . The left column shows the amplitude and the right column the phase. (a) SiGe �110�; (b)
90� Shockley partial dislocation terminating a stacking fault in Ge �110�; (c) randomly distributed Ge columns.
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5. Discussion

The maximum-likelihood re®nement of the projected crystal

potential from an exit wave function works very well on areas

large enough to cover, for example, defects in crystalline

materials. The three test structures investigated have an area

of 34� 32 AÊ each, which completely covers the core structure

of a 90� Shockley partial dislocation terminating a stacking

fault in Ge �110�. The range of specimen thicknesses achieved

by re®ning start models derived from the channelling

approximation of dynamical scattering also makes the

re®nement strategy suitable for practical high-resolution work

in materials research.

In principle, three factors contribute to the computing

power needed for the re®nement. Firstly, the size of the

area makes the numerical effort grow proportionally to

N1N2 log2 N1N2, with N1 and N2 denoting the sampling of

rows and columns of a respective rectangular frame via the

use of fast Fourier transforms during the multislice operations.

Secondly, the effort grows with the specimen thickness and it is

proportional to the number of slices needed to perform the

individual multislice iterations. The third contribution is

proportional to the number of re®nement steps needed to

achieve convergence towards a low value of S2, which clearly

depends on the quality of the start model. Generally, the

performance of the weak-phase-object model as well as the

channelling model deteriorates at larger specimen thicknesses

since in the former case the error of neglecting the amplitude

modulation of the electron wave grows and in the latter case

the wave function inside the crystal must be approximated by

a growing number of Bloch waves.

In our fully numerical example, the precision of the

reconstructed projected crystal potential is in principle as high

as that of the input exit wave function. In practice, however,

two limits are imposed, one by the numerical round-off error

of the multislice iterations, which has already been mentioned

in x4.2, and the other by the noise contained in an experi-

mentally obtained exit wave function. The in¯uence of noise is

generally dif®cult to assess. For the restoration from an exit

wave function of a thin specimen, it is immediately clear that a

noise component will be transferred to the potential map

almost directly. At larger specimen thicknesses, the transfer of

weak noise from the exit wave function into the potential map

will no longer be direct but still small. At a value of the

specimen thickness close to the extinction distance, a recon-

struction may be dif®cult if the nearly extinct signal compo-

nent is overwhelmed by noise.

The failure of the weak-phase-object start model at a large

specimen thickness can be conveniently analysed within the

framework of the Bloch-wave theory of dynamical scattering.

Two of the three test structures investigated, the Shockley

partial dislocation and the area containing randomly distrib-

uted Ge columns, have atom columns of the same kind where

the Ge-atom repeat distance along the incident electron beam

is large enough to excite mainly two Bloch waves during

dynamical scattering. The relation (40) between the projected

crystal potential and the exit wave function takes full account

of the effects of dynamical scattering by the amplitude A and

the phase ', in contrast to the weak-phase-object relation (22),

Figure 3
Projected crystal potentials reconstructed from simulated exit wave
functions at a specimen thickness of 100 AÊ using the channelling start
model. (a) SiGe �110�; (b) 90� Shockley partial dislocation terminating a
stacking fault in Ge �110�; (c) randomly distributed Ge columns.



which `blindly' restores the projected potential from the

imaginary part of the exit wave function.

Neglecting the `dynamical' phase ' at large specimen

thickness is a serious error, which becomes clearer using an

estimate of the parameters introduced in x3.2. In many

materials with widely spaced atom columns, the energy

eigenvalue of the second Bloch wave is close to zero, hence

2 � 0, � � 1=1 and ' � ÿ�z=�. For small specimen thick-

ness, z� �, the dynamical phase also becomes small and the

`dynamical' amplitude (41) approaches the value K=�z.

Relation (40) is then equivalent to the weak-phase-object

model (22). At a specimen thickness approaching half the

extinction distance, however, the dynamical phase turns to

ÿ�=2 thereby interchanging the role of the real and the

imaginary part of  �r; z� in equation (40). In this situation, the

channelling model correctly extracts the real part of the exit

wave function while the weak-phase-object model erroneously

extracts the imaginary part. At a specimen thickness just

below the extinction distance, the weak-phase-object model

even tries to restore an inverted version of the potential map

correctly derived by the channelling model. In any case, the

wrong or unphysical potential maps are too misleading to be

re®ned successfully by the maximum-likelihood algorithm

towards the correct solution.

The success of the maximum-likelihood re®nement algor-

ithm in the other test case, the SiGe alloy with random Si and

Ge occupancies, can also be conveniently analysed within the

framework of the Bloch-wave theory of dynamical scattering.

At ®rst sight, it seems strange that the channelling model (40),

considering only two Bloch waves, is capable of setting up a

reasonable start projected potential, especially at the larger

specimen thickness of t � 100 AÊ . Since the SiGe alloy contains

Si and Ge columns of different scattering power, at least three

Bloch waves are required to properly describe dynamical

scattering. Within the framework of the channelling form-

alism, scattering by single Si and Ge columns is modelled by

two different extinction distances, and hence two different sets

of the dynamical amplitude A and the dynamical phase ', at

the same specimen thickness.

Different strategies can be used to set up a proper start

projected potential for this and also more complicated situa-

tions. The ®rst one exploits the common idea of cutting the

exit wave function under investigation into many small areas

each containing one isolated atom column. Since high-energy

electron diffraction produces local modulations of the wave

function, it is possible to restore the local column potential via

the channelling model with a set of dynamical amplitudes A

and phases ' adapted for each single column. Finally, the set of

the restored column potentials can be patched together to

form the ®rst guess at the projected potential for the whole

area under investigation. A second and more simple approach

exploits the situation that in many materials containing atom

columns of different scattering power the related extinction

distances do not differ too much. The extinction distance �
enters the channelling model via the dynamical amplitude and

phase in the form t=�, with t being the specimen thickness.

Therefore, the start model for the whole area merely needs to

represent a proper compromise of the different dynamical

amplitudes and phases. The test on the SiGe alloy structure,

where the latter approach was used, demonstrates that an

`overall' dynamical amplitude and phase can be successfully

found even for the very differently scattering Si and Ge

columns at a specimen thickness of t � 100 AÊ .

An application of the latter approach to a material

comprising columns of medium scattering power and very

small scattering power, such as oxygen columns, is also very

likely to be successful. At specimen thicknesses where the

medium scattering columns are not extinct, the channelling

model, as above, will restore a good guess at the local

projected potential with a certain set of the dynamical

amplitude and phase. On the one hand, these values will not

be well suited to restore the local projected potential at the

weakly scattering columns. Since at these column sites the

modulation of the exit wave function is small anyway and

deviates only weakly from a plane wave, the improperly

restored local projected potential is essentially close to zero,

U�r� � 0. On the other hand, U�r� � 0 is a perfectly good start

model for weakly scattering columns at a specimen thickness

below half the extinction distance (x3.1). In the situation

mentioned, the channelling model will therefore automatically

produce a projected potential map ready for a successful

maximum-likelihood re®nement.

Besides the exit wave function, the most important input

parameter of the re®nement algorithm is the specimen

thickness. It is a priori unknown and up to now there is still no

structure-independent way to determine it precisely in a real

high-resolution experiment. In the present work on the test

structures, the specimen thickness, of course, was known in

every instance and the respective proper values were trans-

ferred to the re®nement algorithm.

For real experimental cases, the specimen thickness can be

simply determined within the framework of the maximum-

likelihood formalism by running the re®nement algorithm for

different guesses at the specimen thickness and ®nally

choosing the one with the smallest value of S2. More elegantly,

the maximum-likelihood re®nement algorithm can be ex-

tended by a procedure to re®ne a ®rst guess at the specimen
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Figure 4
Convergence plot of the maximum-likelihood re®nement algorithm for
the reconstruction of the projected crystal potential of SiGe �110� at a
specimen thickness of 100 AÊ based on the channelling start model. The
mean squared difference S2 is plotted versus the number of re®nement
steps.
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thickness parallel to the projected potential. Following the

route of xx2.3 and 2.4, the gradient of S2 with respect to the

thickness,

@S2

@t
� ÿ2 Re Wexp

@Wsim

@t

����� �� �
� 4� Im hWexpjAjWsimi

� 	
; �43�

is needed to calculate the nth thickness correction

�t�n� � ÿ K2

2�2hU2�r�i
@S2

@t

����
t�t�n�

: �44�

Considering numerical ef®ciency, it is advantageous to

evaluate the ®rst term in (43) since the multislice iterations of

the maximum-likelihood algorithm provide the wave func-

tions at thicknesses t and t ÿ�t, allowing a direct calculation

of the gradient of the exit wave function.

In principle, the effects on the exit wave function by a

change of the specimen thickness or a change of the projected

potential can be separated. This can be seen from the math-

ematical description of dynamical diffraction using equations

(6), (7) and (8), where the specimen thickness t enters via s�g�t
and U�g�t. Hence, the free-space propagation, described by

s�g�t, contains information on the thickness independently of

the projected potential. Ambiguities arise when free-space

propagation can be neglected, for example for scattering from

a weak phase object, where projected potential and thickness

enter as a product. Another ambiguity occurs if the dynamical

diffraction can be well described by the two-Bloch-wave

model, where the specimen thickness can only be determined

up to a multiple of the extinction distance. In practice, these

ambiguities are not important since in many cases high-reso-

lution investigations are made, on the one hand, in thin

specimen areas below the ®rst extinction distance. On the

other hand, the case of a weak phase object, exhibiting a pure

phase modulation of the exit wave, is rarely met for crystalline

materials of medium or strong scattering power.

A general problem of all techniques determining the

projected crystal potential from experimental exit wave

functions is the missing information on high spatial frequen-

cies owing to the information limit of the instrument, inde-

pendent of whether it is caused by an objective aperture or by

the virtual aperture imposed by the dampening envelopes of

the contrast transfer function. Since, for a proper description

of dynamical diffraction, Fourier coef®cients of the projected

potential at high and at low frequencies are equally important,

the potential reconstruction is in principle under-determined.

Extending the information limit will improve the situation on

the one hand. On the other hand, the use of additional

structural knowledge during the re®nement procedure can

compensate for the loss of high-frequency structure informa-

tion. The latter comprises various methods of constrained

optimization including the popular maximum-entropy

method, which has recently been applied in high-resolution

scanning transmission electron microscopy (Nellist & Penny-

cook, 1998).

6. Conclusions

The maximum-likelihood re®nement algorithm is able to

reconstruct precisely the projected crystal potential from a

high-resolution exit wave function. The reconstruction can be

performed on a ®eld of view large enough to cover defects in

crystalline materials and at specimen thicknesses relevant for

high-resolution transmission electron microscopy. The success

of the re®nement algorithm is based on two major improve-

ments: the use of start models of the projected potential for

the dynamical scattering along atom columns as well as a

calculation of the gradient of S2 needed to solve the

maximum-likelihood equations for a large specimen thickness.

The numerical implementation of the re®nement iteration

using the multislice algorithm and a compact gradient calcu-

lation procedure leads to execution times of a few minutes on

today's workstations.
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